"Przez 20 czy 30 lat usiłowano zbudować robotyczne dłonie, jednak rzadko były one w stanie wykonać zadania wymagające zręczności" - mówi Robert D. Howe z harvardzkiego BioRobotics Laboratory. "W realnym świecie zarówno roboty, jak i ludzie mają trudności z ustaleniem zależności pomiędzy ich dłonią a obiektem, który chcą chwycić. Ludzie kompensują to jednak otwierając dłoń i przesuwając palce po przedmiocie zanim zamkną dłoń i go chwycą".
Tradycyjnie budowane sztuczne dłonie wyposażone są w wyspecjalizowane sensory. Są bardzo drogie, a jednocześnie wolne, gdyż przed wykonaniem najprostszych zadań muszą uporać się z serią obliczeń. Naukowcy postanowili przeprojektować dłoń tak, by automatycznie modyfikowała błędne ruchy i mogła chwycić przedmioty o różnych kształtach.
Pod koniec lat 80. Robert Full, profesor z Uniwersytetu Kalifornijskiego w Berkeley, zaczął analizować mechanizmy, które pozwalają karaluchom biegać po nierównych powierzchniach. Biorąc pod uwagę ich miniaturowe mózgi, nie mogą w takim tempie obliczać swoich ruchów. Okazuje się jednak, że mają elastyczne i sprężyste nogi, dzięki którym automatycznie dostosowują się do podłoża. Full skonstruował wówczas ośmionogiego robota, który niczym karaluch pokonywał nierówne powierzchnie z niespotykaną dotąd wśród robotów szybkością.
Howe i współpracujący z nim Aaron Dollar postanowili ten sam mechanizm wykorzystać przy budowaniu dłoni. Udało im się stworzyć czteropalczaste urządzenie, które posiada wiele cech ludzkiej dłoni. Zostało ono wyposażone w sensory, które reagują, gdy palce robota dotykają obiektu i modyfikują błędy.
Jak zaznaczają naukowcy, na razie dłoń nie jest w stanie chwytać małych przedmiotów, takich jak klucze czy sztućce. Wymagałoby to dodatkowych mechanizmów, które mogłyby zwiększyć jej wagę.
Dollar, który pracuje również nad protezami dłoni, dodaje, że obecnie pojedynczy palec waży nieco ponad 42 gramy, co jest dużą zaletą, gdyż wiele osób po amputacji rezygnuje z protez ze względu na ich wagę.